Information processing is the change (processing) of information in any manner detectable by an observer. As such, it is a process which describes everything which happens (changes) in the universe, from the falling of a rock (a change in position) to the printing of a text file from a digital computer system. In the latter case, an information processor is changing the form of presentation of that text file. Information processing may more specifically be defined in terms used by Claude E. Shannon as the conversion of latent information into manifest information . Latent and manifest information is defined through the terms of equivocation (remaining uncertainty, what value the sender has actually chosen), dissipation (uncertainty of the sender what the receiver has actually received) and transformation (saved effort of questioning - equivocation minus dissipation).
Within the field of cognitive psychology, information processing is an approach to the goal of understanding human thinking. It arose in the 1940s and 1950s. The essence of the approach is to see cognition as being essentially computational in nature, with mind being the software and the brain being the hardware. The information processing approach in psychology is closely allied to the Computational theory of mind in philosophy; it is also related, though not identical, to cognitivism in psychology and functionalism in philosophy.
Information processing may be sequential or parallel, either of which may be centralized or decentralized (distributed). The parallel distributed processing approach of the mid-1980s became popular under the name connectionism. In the early 1950s Friedrich Hayek was ahead of his time when he posited the idea of spontaneous order in the brain arising out of decentralized networks of simple units (neurons). However, Hayek is rarely cited in the literature of connectionism.
In the 1970s, Abraham Moles and Frieder Nake were among the first to establish and analyze links between information processing and aesthetics.
There are several proposed models/theories that describe the way in which we process information.
The information processing model suggests that information is channeled in different ways. For example, the sensory register takes in via the five senses: visual, auditory, tactile, olfactory, and taste. These are all present since birth and are able to handle simultaneous processing (e.g., food – taste it, smell it, see it). In general, learning benefits occur when there is a developed process of pattern recognition. The sensory register has a large capacity and its behavioral response is very short (1-3 seconds). Within this model, short term memory or working memory has limited capacity. Its duration is of 5-20 seconds before it’s out of the subject's mind. This occurs often with names of people newly introduced to. Images or information based on meaning are stored here as well, but it decays without rehearsal or repetition of such information. On the other hand, long term memory has a potentially unlimited capacity and its duration is indefinite. Although sometimes it is difficult to access, it encompasses everything learned until this point in time. One might become forgetful or feel as if the information is on the tip of the tongue.
Another approach to viewing the ways in which information is processed in humans was suggested by Jean Piaget in what is called the Piaget’s Cognitive Development Theory. Piaget developed his model based on development and growth. He identified four different stages between different age brackets characterized by the type of information and by a distinctive thought process. The four stages are: the sensorimotor (from birth to 2 years), preoperational (2-6 years), concrete operational (6-11 years), and formal operational periods (11 years and older). During the sensorimotor stage, newborns and toddlers rely on their senses for information processing to which they respond with reflexes. In the preoperational stage, children learn through imitation and remain unable to take other people’s point of view. The concrete operational stage is characterized by the developing ability to use logic and to consider multiple factors to solve a problem. The last stage is the formal operational, in which preadolescents and adolescents begin to understand abstract concepts and to develop the ability to create arguments and counter arguments.
Furthermore, adolescence is characterized by a series of changes in the biological, cognitive, and social realms. In the cognitive area, it is worth noting that the brain’s prefrontal cortex as well as the limbic system undergoes important changes. The prefrontal cortex is the part of the brain that is active when engaged in complicated cognitive activities such as planning, generating goals and strategies, intuitive decision-making, and metacognition (thinking about thinking). (This is consistent with Piaget’s last stage of formal operations.) The prefrontal cortex becomes complete between adolescence and early adulthood. The limbic system is the part of the brain that modulates reward sensitivity based on changes in the levels of neurotransmitters (e.g., dopamine) and emotions.
In short, cognitive abilities vary according to our development and stages in life. It is at the adult stage that we are better able to be better planners, process and comprehend abstract concepts, and evaluate risks and benefits more aptly than an adolescent or child would be able to.